当前位置:首页 > 过刊浏览->2025年46卷第8期
热处理对激光增材制造非等原子FeNiCoAlTaB 高熵合金组织性能影响
Heat Treatment Effects on Microstructure and Mechanical Properties of Non-equiatomic FeNiCoAlTaB High Entropy Alloy Fabricated by Additive Manufacturing
浏览(56) 下载(1)
- DOI:
- 作者:
- 孙沁瑶1,2,杜大帆1,2,彭望君1,2,何 林1,2,董安平1,2,赵 凯3
SUNQinyao1,2, DU Dafan1,2, PENG Wangjun1,2, HE Lin1,2, DONG Anping1,2, ZHAO Kai3
- 作者单位:
- 1. 上海交通大学上海市先进高温材料及其精密成形重点实验室,上海200240;2.上海交通大学金属基复合材料全国 重点实验室,上海200240;3.上海航天设备制造总厂有限公司,上海200245
1. Shanghai Key Lab of Advanced High-temperature Materials, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Precision Forming and State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China; 3. Shanghai Aerospace Equipment Manufacturing General Factory Co., Ltd., Shanghai 200245, China
- 关键词:
- 高熵合金;激光粉末床熔融;低温时效;微观组织演化;力学性能
high-entropy alloy; laser powder bed fusion; low-temperature aging; microstructural evolution; mechanical properties
- 摘要:
- 非等原子比FeNiCoAlTaB高熵合金(NCATB)因其独特的元素组成展现出良好的工程应用潜力,然而传统 加工工艺产生的元素偏析和晶界NiAl相会损害其强度性能。因此,采用激光粉末床熔融(laserpowderbedfusion,LPBF) 技术结合低温时效处理,制备兼具强度和塑性的NCATB高熵合金,并系统研究了工艺参数对合金致密度、微观组织、 应力状态及力学性能的影响规律。结果表明,适当的激光功率与扫描速度组合可有效减少成形缺陷并提高致密度;快速 凝固引入大量位错结构,形成明显的织构与细化组织。 通过热处理可促进γ′与B2析出相的形成,协同晶界演化,有效 提升材料强度。 研究表明,增材制造结合热处理工艺可实现NCATB合金的强塑协同调控,展现出优异的综合力学性能 与良好的工程应用潜力。Non-equiatomic FeNiCoAlTaB high-entropy alloys (NCATBs) exhibit promising engineering application potential due to their unique elemental composition. However, the element segregation and NiAl phase alone at the grain boundary generated by traditional processing techniques can compromise the strength properties of the material. On this basis, a non-equiatomic FeNiCoAlTaB high-entropy alloy (NCATB-HEA) with a balance of strength and ductility was fabricated via laser powder bed fusion (LPBF), followed by a 600 ℃ low-temperature aging treatment. The effects of processing parameters on the densification, microstructure, residual stress, and mechanical properties of the alloy were systematically investigated. The results show that a proper combination of laser power and scan speed significantly reduces the number of defects and improves the density. Rapid solidification introduces a high density of dislocations and refines the grain structure with an evident texture. Heat treatment promotes the formation of γ′ and B2 precipitates, which synergistically evolve with grain boundaries to increase the alloy strength. This work demonstrates that the integration of additive manufacturing and heat treatment enables the coordinated strengthening and toughening of NCATB alloys, offering promising mechanical performance and engineering potential.