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Abstract: Crystal plasticity, as an important theoretical approach for overcoming the limitations of macroscopic plastic
homogenization, helps to link microscopic deformation with macroscopic properties and enables accurate prediction of
material mechanical behavior. The kinematics of crystal plasticity deformation and the basis of crystal plastic deformation
are reviewed in this paper. The advantages and disadvantages of the phenomenological crystal plasticity constitutive model
and the mechanical crystal plasticity constitutive model were compared. According to the relationship between the single
crystal plasticity model and the polycrystalline plastic model as well as their respective natures, the homogenization model
is introduced, and the full-field crystal plastic model and the mean-field crystal plastic model are introduced. Representative
examples of crystal plasticity finite element models in engineering applications are presented, and the breakthroughs
brought by the application of this model are elaborated. The shortcomings of polycrystalline plasticity models and the
limitations of the theory of crystal plasticity are proposed, and future development trends are proposed.
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