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Abstract: With the rapid development of artificial intelligence, the application of machine learning algorithms in the
steelmaking industry has become a research hotspot. This paper systematically explores the challenges and opportunities of
intelligent models in complex industrial scenarios of short-process steelmaking, with a focus on analysing their current
applications in key stages such as electric arc furnaces, refining, and continuous casting. An examination of typical
scenarios in the steelmaking process elaborates on the role of machine learning in process optimization, anomaly detection,
and autonomous decision-making. In response to the real-time and reliability demands of the steelmaking environment, this
study proposes research directions for machine learning within intelligent manufacturing systems, including cutting-edge
technologies such as multimodal sensing, causal reasoning, and digital twins. Finally, this study explores the challenges,
potential solutions, and future application prospects of machine learning in deep integration with the short-process
steelmaking industry.
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Fig.1 Schematic diagram of short-term steelmaking
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Tab.1 Current status of artificial intelligence applications in electric furnace steelmaking processes at home and abroad

Publications Data collection features Model application ML method Training samples Evaluation metric
. Process data (ladle argon pressure, Evolutionary 4033 training samples, 449
Rezvani et al. . ) Foam slag property o
argon flow rate, stopper position) with o wavelet neural  validation samples, 499 test 99%
(2022) ) prediction
timestamps network samples
13 factors affecting EAF endpoint o
] . o 1200 heats (800 training
Yang et al. carbon (scrap weight, hot metal Endpoint carbon Artificial neural
) ) o samples, 200 test samples, 96.67%
(2022)™ weight, [C], [Si], [Mn], [P], [S], prediction network o
200 validation samples)
temperature, etc.)
) ) . Modified 3 zones (15 samples each),
Vinayaka et al. Time-series current EAF voltage ) o
o backpropagation 11 training samples, 4 test -
(2021)® and voltage data prediction
neural network samples
) 49 process variables (electrode Attention-based
Godoy-Rojas Furnace wall 177312 samples (90%

current, voltage, arc power, chemical o
temperature prediction

et al. (2022)! .
composition, etc.) 16 thermocouples

. EAF process parameters (scrap E .
i . . L . nergy consumption
Tomazic ctal weight, melting time, heating delays,

deep recurrent

neural network

Takagi-Sugeno

training, 10% test)

577 samples (404 training,

0] rediction Fuzzy Modelin, 173 test)
(2022) temperature, O, and C inputs, etc.) P “ €
Process data (scrap and hot metal
Zou et al. weight, [C], [Si], [Mn], [P], Endpoint phosphorus ~ Backpropagation 580 datasets (400 training, 87.78%(+0.004%),
(2022)1 temperature, power, O, and lime prediction neural network 180 test) 75.56%(x0.003%)
consumption)
L Electrode control data (position, o
Yildiz et al. . ) Artificial neural o
active and reactive power, current, Electrode control 80% training, 20% test 98%
(2022) ) network
hydraulic pressure, etc.)
Panoiu et al. Power quality metrics (active and . ) Hybrid 400 samples (85% training,
. o ) Energy quality analysis 94%
(2024)™ reactive power, harmonic distortion) CNN-LSTM-GRU 15% test)
) Process inputs (scrap gas, O,, DRI,  Steel carbon content, o
Niyayesh et al. o ) . Artificial neural
slag, carbon injection, arc power,  oxide composition, and 42 000 samples -
(2024)14 o network
pressure, CO,, Fe, N,, CO levels, etc.) temperature prediction
DRI quantity, flux addition, EAF energy
Zhuo et al. o .
(200409 temperature, tapping time, natural gas, efficiency XGBoost 699 samples -
0,, slag, carbon inputs analysis
Process data (scrap weight, [C], [Mn], Endpoint o 1 700 samples (1 005 after
Azzaz et al. ; o Artificial neural ) .
[Cr], [S], O, volume, lime addition, phosphorus cleaning; 80% training, 100%
(2025)t o network
energy, temperature, etc.) prediction 20% test)
b
’ N N Y 9 ]
N o b ’ b
(evolutionary wavelet neural network,
EWNN) (artificial neural network, - Niyayesh [ ,
ANN) (backpropagation
neural network, BP) | ,
(attention-based deep recurrent neural network, o
RNN) , Takagi-Sugeno XGBoost , Ro-
bustScaler s One-Hot

- EWNN
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3846 4147-53)

, ; (
] D) ) ’
- PCA-CBR(principal component analysis- o ,
case-based reasoning) CBR-HTC (improved case- N N ,
based reasoning with heat transfer calculation) , o
o (deep neural network, DNN) , ,
, 2
o , 57.69%,
2.2 , 19.23% 11.54%,
o LF( ) 0 )
RH( ) ; ;
N N ’ 2 ’ o
[1727)
2
, , Fig.2 Statistical distribution of application areas of machine
learning in the intelligent continuous casting process
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Tab.2 Current status of artificial intelligence applications in refining processes at home and abroad
Model
Publications Data collection features o ML method Training samples ~ Evaluation metric
application
Process data (11 factors: RH start temperature,
scrap quality, oxygen blowing volume, ladle ~ RH endpoint o .
o . Principal component 1928 datasets 69.67%(+5 C),
Guetal. thermal status (waiting time, lifespan), molten steel ) )
) . analysis-case-based (1628 case library, 83.67%(£7 C),
(2020)7 refining cycle, slag thickness, molten steel temperature . i
) o reasoning 300 test) 97%(£10 C)
quality, RH vessel temperature, vacuum prediction

refining time)

Process data (start time, scrap weight, power 5
57.33%(£3 C),

supply, ladle lifespan, casting time, emptying LF molten steel Improved case-based 1 898 datasets
Yuan et al. . o . . o 81%(+5 C),
time, total processing time, slag layer temperature  reasoning with heat transfer (1 598 training, 3
@021y . iy - ) 939%(27 C),
thickness, molten steel weight, alloy addition, prediction calculation 300 test) 3
. 98%(+10C)
argon flow rate, endpoint temperature)
Process data (alloy addition, slag-forming
. . LF molten steel 2 000 samples .
Xin et al. materials, ladle turnover cycle, molten steel Expert control and deep o 91.4%(£3 C),
. L o temperature (1500 training, 3
(2022)™ weight, initial temperature, refining time, o neural network 99.4%(£5 C)
o . prediction 500 test)
heating time, argon consumption)
Process data (7 variables: molten steel weight, ) )
o o Hybrid power consumption 2 500 samples 3
Shao et al. initial temperature, alloy addition, LF power-on . o 93.0%(=3 C),
. ) . . L mechanism-deep neural (2 000 training, 3
(2020)*"  slag-forming materials, slag layer thickness, ~ time prediction 96.9%(%5 C)
o network (PCM-DNN) 500 test)
ladle usage count, soft blowing time)
LF mixing time
in et al. rocess data (gas flow rate, liquid depth, sla; and sla esponse surface experimental .0%! R
Xi L. P data (gas fl liquid depth, slag  (MT) and slag Resp fe 20 experi 1 96.0%(MT)
(2022)21 layer thickness) eye area (SEA) methodology datasets 97.1%(EA)
prediction
Process data (operation time, molten steel
H | weight, initial carbon content, carbon RH real-time 626 datasets
eoctal.
(2022 addition, vacuum chamber pressure, carbon content  Artificial neural network (70% training, -
circulation flow rate, CO and CO, prediction 30% test)
concentration, top-blown oxygen flow)
Process data (ladle turnover time, molten steel Isolation forest, zero-phase 3
) o o LF molten steel . 9 764 heats 77.9%(%3 C),
Xin et al. weight, initial temperature, refining time, component analysis o 3
o ) . temperature o (8 264 training, 92.3%(£5 C),
(2023)= heating time, argon consumption, additive o whitening-deep neural
prediction 1 500 test) 99.6%(x10 C)
dosage) network (IF-ZCA-DNN)
Process data (molten steel weight, o
o ) . ) o Si yield rate :
. initial/endpoint temperature, refining/heating . Principal component 1 549 heats
Xin et al. . . o LF alloy yield ) o 54.0%(=1%),
time, argon consumption, fluorite/lime O analysis-deep neural (1 149 training,
(2022)24 o . prediction 93.8%(+3%),
weight, initial, [C], [Mn], [S], [P], [Si], [Als] network (PCA-DNN) 400 test)
. 98.8%(£5%)
content, ferrosilicon content)
) Process data (6 variables: heating time, ladle ~ LF molten steel . 8 962 datasets
Xin et al. ) ) . LightGBM and grey wolf o 3
turnover time, argon consumption, refining temperature o (80% training, 89.35%(+5 C)
2024 o o optimizer (GWO-LGBM)
time, molten steel weight, initial temperature) prediction 20% test)
Process data (ladle preheating temperature, ) Particle swarm 2 368 samples 43.16%(%3 C),
. LF endpoint o .
Wangetal.  molten steel weight, returned slag volume, optimization-long (1 646 after cleaning;  71.12%(+5 C),
temperature
(2025)%! alloy and slag addition, initial temperature, I; ) short-term memory 80% training, 88.15%(+8 C),
rediction
refining time) P (PSO-LSTM) 20% test) 94.83%(x10 C)
. o LF oxygen .
Jiang et al. Process data (initial temperature, [O], [C], ) Backpropagation neural 330 heats (280
. S absorption rate o -
(2024)2"  [Si], [Mn], [Al] content, decarburization time) o network training, 50 test)
prediction
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Tab.3 Current status of classified AI applications in continuous casting processes at home and abroad
Publications Data collection features Model application ML method Training samples  Evaluation metric
Mold thermocouple temperatures ) ) ) )
Duan et al. ) Breakout risk Hierarchical clustering and 30 breakout cases,
(120 thermocouples installed on . . L . 100%
(2020)= ) classification dynamic time warping (DTW) 50 false alarms
wide and narrow faces)
) 20 normal, 30 false
Duanetal. Mold thermocouple temperatures Breakout risk
o DTW-DBSCAN alarms, 30 breakout -
(2020)* (120 thermocouples) classification
cases
50 normal, 20
Duanetal.  Mold thermocouple time-series Breakout risk
) . k-means and DTW breakout, 50 false 100%
(2020)2 data classification
alarms
Tian et al. Process parameters, mold Breakout risk Support vector machine 37 breakout cases, 100%
(2020)2" thermocouple data classification (SVM) 58 false alarms ’
) 40 breakout cases,
Duan et al. Mold thermocouple data Breakout risk .
) ) ) k-means clustering 50 normal/false 100%
(2020)*% (193 wide face, 1x3 narrow face) classification
alarms
Zou et al. Casting and cooling parameters, Internal crack
) ) . PCA and deep neural network 1600 samples 92.2%
(2021)3 EMS data, chemistry classification
Duan et al. Mold thermocouple data (19x3 Longitudinal crack 50 crack cases,
. o PCA-SVM 96%
(2021)B4 wide face, 1x3 narrow face) classification 50 normal
Duan et al. Mold thermocouple data (19x3 Longitudinal crack 50 crack cases,
. o DTW-KNN 99%
(2021)= wide face, 1x3 narrow face) classification 50 normal
Zhang et al. Mold thermocouple Longitudinal crack Random forest and k-means 31 normal,
(2022)F time-series data classification (RF-kMeans) 31 crack cases
Thermocouple data (19x3 wide ) . )
Wang et al. . Breakout risk Auxiliary classifier WGAN-GP 40 breakout,
face, 1x3 narrow face), casting ) ) 98%
(2022)57 ) ) classification (ACWGAN-GP) 40 false alarms
speed, geometric/motion features
Sala et al. Mold thermocouple, casting Longitudinal crack
) ) . FCN-CNN-SE 5600 samples -
(2023)B8 process and chemistry data classification
Liu et al. Mold thermocouple data (19x3 Longitudinal crack 30 crack cases,
. ) . PSO-XGBoost 95.8%
(2024)3) wide face, 1x3 narrow face) classification 90 normal
Thermocouple data (19x3 wide ) ) . 560 samples (280
Wang et al. . Breakout risk Genetic algorithm-BP neural
face, 2x3 narrow face), casting ) . normal, 280 97.56%
(2023) classification network (GA-BP)
speed breakout)
Shi et al. Mold thermocouple time-series Breakout risk Tabu search-genetic algorithm
(2020)#1 data classification (TS-GA)
Yuetal. Mold thermocouple time-series Breakout risk o 80 normal,
) . One-vs-rest decision tree 98.39%
(2024) data classification 80 breakout cases
Zhangetal. Mold thermocouple time-series Breakout risk Firefly algorithm-BP neural 80 normal, 99.23%
(2024) data classification network (LFFA-BP) 80 breakout cases .
Liu et al. Thermocouple data (7x3 wide Breakout risk 43 breakout,
. . XGBoost 99.5%
(2024)# face, 1x3 narrow face) classification 128 false alarms
Liu et al. Thermocouple data (7x3 wide Breakout risk . .
. . Stacked multi-classifier 43 breakout cases 98.3%
(2024)# face, 1x3 narrow face) classification
Dinizetal. SEN opening, mold level, casting ) )
. . . SEN clogging detection ConvLSTM#7 - 97.8%
(2024)H speed, tundish drainage time
N o ]
Y b
b A} ’
o N o

H ] kY
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Tab.4 Current status of regression—based continuous casting processes at home and abroad

Publications

Data collection features

Model application

ML method Training samples

Evaluation metric

Ansari et al.

Casting speed, mold level, mold

Breakout risk

Backpropagation neural 100 breakout cases,

Hh ] % Y

100%
(2022)#7 thermocouple temperatures, mold taper regression network (ANN-BP) 405 normal samples !
Process data (ladle argon pressure, )
Wang et al. . . Nozzle clogging  Long short-term memory o ULC and LC:100%,
argon flow rate, stopper position) with ) 70% training set
(2022)H ) regression network (LSTM) MC:71%,Ca:67%
timestamps
Tundish temperature, mold o
. Whale optimization
) thermocouple data (10x6 wide face, 2x6 ) ) )
Shi et al. ) Breakout risk algorithm-twin support
natrow face), casting speed, mold . . 2000 datasets 98.2%
(2020)*! ] regression vector regression
level/taper, slab cross-section, mold
] (LWOA-TSVR)
lifespan/water flow
) Whale optimization
Process parameters (tundish mass, . 8 000 samples
Xu et al. . ) Mold level algorithm-backpropaga- o
stopper position, pulling force, mold ) ) (90% training, 10% 91%
(2023)% o regression tion neural network
oscillation) test)
(WOA-BP)
. . Soft actor-critic )
Wu et al. Slab width, slab thickness, target level Mold level . . Real-time
i . . . reinforcement learning 89.5%
(2023)51 curve, time-series data regression sensor data
(SAC)
) Time-series mold signals )
Kirmse et al. Breakout risk
| (thermocouples, level), steel ) LSTM - -
(2023)# ) regression
chemistry/grade
) . Adaptive neuro-fuzzy 150 samples (120
Kuthe et al. Process data (casting speed, stopper Nozzle castability o
. ) inference system (ANFIS) training, -
(2024)53 position, temperature) regression o
and LSTM 30 validation)
3 . ( IR (
) ,
31 ,
N N PINN XG-
s Boost-DNN o
] b b
o
, 3.2
o] b
b o b b
2 o
9 o 9’
’ o o
b ’ b
o
b b b
o o ’ b
o
o N 9 b
b o ]
o ’ b
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