DOI:10.16410/j.issn1000-8365.2025.4251

调质温度对超高强中锰钢微观组织和 力学性能的影响

蒋家乐¹,李云杰¹,李小琳²,袁 国¹

(1. 东北大学 轧制技术及连轧自动化国家重点实验室, 辽宁 沈阳 110819; 2. 西北工业大学 凝固技术国家重点实验室, 陕西 西安 710072)

摘 要:2000 MPa 级超高强钢是极端服役环境用的关键结构材料,面临严重的强塑性倒置、合金昂贵、生产制备工 艺复杂等难题。为此,设计了低成本 C-Mn 成分体系,研究不同调质温度对实验钢微观组织和力学性能的影响。结 果表明,随着调质温度的增加,实验钢的原始奥氏体由带状向等轴状转变,在 780 ℃调质时,带状原始奥氏体晶粒宽约 4 μm、长约 14 μm,等轴状原始奥氏体晶粒宽约 3 μm、长约 5 μm。实验钢的位错密度随调质温度的增加,从 6.87× 10¹⁵ m² 降至 5.27×10¹⁵ m²,再降低至 4.46×10¹⁵ m²。实验钢室温下残余奥氏体(retained austenite, RA)的体积分数由 12.6% 降至 10.2%再降至 9.2%,变形前后 RA 的体积分数变化值由 7.1%降至 6.8%再升至 7.1%。样品 Q780 的综合力学性能 最好,其屈服和抗拉强度最大,分别为 1 665 和 2 107 MPa,均匀伸长率也相对较高,为 8.9%。5 mm 厚 V 口 Q780 试样的 室温裂纹萌生能(9.8 J)和裂纹扩展能(3.9 J)也相对较高,使其室温冲击功最高为 13.7 J。其优异性能归因于最大的位错 密度(6.87×10¹⁵ m²)、最大的 RA 体积分数(12.6%)和最小的马氏体平均晶粒尺寸(0.77 μm)。

关键词:超高强钢;原始奥氏体;调质温度;残余奥氏体;力学性能

中图分类号: TG156.21

文献标识码:A 文章

文章编号:1000-8365(2025)02-0153-07

Effect of Quenching Temperature on the Microstructure and Mechanical Properties of Ultrahigh Strength Medium Manganese Steel

JIANG Jiale¹, LI Yunjie¹, LI Xiaolin², YUAN Guo¹

(1. State Key Laboratory of Rolling and Automation Northeastern University, Shenyang 110819, China; 2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China)

Abstract: 2 000 MPa ultrahigh-strength steel is a key structural material for extreme service environments and faces serious problems such as strength-ductility inversion, expensive alloys, and complex production and preparation processes. To this end, a low-cost C-Mn composition system was designed, and the effects of different quenching and tempering temperatures on the microstructure and mechanical properties of the experimental steel were studied. The results show that with increasing quenching and tempering temperatures, the original austenite of the experimental steel changes from banded to equiaxed. When quenched and tempered at 780 °C, the width and length of the banded original austenite grains are approximately 4 and 14 μ m, respectively, and those of the equiaxed original austenite grains are approximately 3 and 5 μ m, respectively. The dislocation density of the experimental steel also decreases from 6.87×10¹⁵ m⁻² to 5.27×10¹⁵ m⁻² and then to 4.46×10¹⁵ m⁻² with increasing quenching and tempering temperatures. The volume fraction of retained austenite (RA) of the experimental steel at room temperature decreases from 12.6% to 10.2% and then to 9.2%. The variation in the volume fraction of RA before and after deformation decreases from 7.1% to 6.8% and then increases to 7.1%. Sample Q780 has the best comprehensive mechanical properties, with the highest yield and tensile strengths of 1 665 and 2 107 MPa, respectively, and also a relatively high uniform elongation of 8.9%. The room temperature crack initiation energy (9.8 J) and crack propagation energy (3.9 J) of 5 mm thick Q780 with a V-notch are also relatively high,

收稿日期: 2024-12-13

基金项目:国家自然科学基金(52104371);西北工业大学凝固技术国家重点实验室开放课题(SKLSP202311)

作者简介: 蒋家乐, 2001 年生, 博士生. 研究方向为高强钢强韧化机制研究工作. Email: 2310164@stu.neu.edu.cn

通信作者:李云杰,1991年生,博士,教授.研究方向为高强钢强韧化机制研究工作.Email:liyunjie@ral.neu.edu.cn;neu_liyunjie@163.com 引用格式:蒋家乐,李云杰,李小琳,袁国.调质温度对超高强中锰钢微观组织和力学性能的影响[J].铸造技术,2025,46(2):153-159.

JIANG J L, LI Y J, LI X L, YUAN G. Effect of quenching temperature on the microstructure and mechanical properties of ultrahigh strength medium manganese steel[J]. Foundry Technology, 2025, 46(2): 153-159.

making its room temperature impact energy as high as 13.7 J. The reasons for its excellent performance are that it has the largest dislocation density (6.87×10^{15} m⁻²), the largest RA volume fraction (12.6%) and the smallest average martensite grain size (0.77 μ m).

Key words: ultrahigh-strength steel; original austenite; quenching temperature; retained austenite; mechanical properties

超高强度钢在工程机械、深海、航空工业等特 殊领域越来越多地被采用。相比普通钢材,超高强 度钢具有更高的屈服强度和抗拉强度,使其能在保 持相同强度的情况下减轻重量,但超高强度钢存在 着强度-延展性-韧性之间的矛盾难题[1-2]。目前国 内外针对此问题的研究集中于通过中低温回火(奥氏 体化温度以下)来调控马氏体、奥氏体和析出相,改 善其组织和力学性能。Jiang等³³利用时效处理得到 高密度有序Ni(Al, Fe)纳米颗粒来提升超高马氏体 时效钢的抗拉强度(不低于2.2 GPa) 和塑性(不低于 8%),其点阵错配度最小化,显著降低金属间化合物 颗粒析出的形核势垒,促进更小尺度(2~5 nm)的纳 米颗粒均匀弥散分布,有效阻碍位错对增强相颗 粒的切过作用,获得优异综合性能的新型马氏体 时效钢。Li等4利用低温回火成功制备出低成本 C-Mn系2000 MPa级超高强塑性钢,实现了1600~ 1900 MPa屈服强度、2000~2400 MPa抗拉强度和 18%~25%均匀伸长率的极致性能,并创新性地提出 了"马氏体拓扑学结构设计+亚稳相调控"增塑新机 制。He等¹⁹利用低温回火将亚稳态奥氏体晶粒嵌入 高位错密度的马氏体中,获得了2.2 GPa的强度和 16%的均匀伸长率。Wang等问通过改变 Mn 含量降 低变体选择性,钢中较高的Schmid因子和较高的几 何必要位错提高了抗变形能力和材料强度,在抗拉 强度为2.3 GPa、韧性为15.9 J(V口冲击)的情况下,伸 长率仅为5.2%。Zhou等四采用循环淬火细化马氏体 时效钢中原始奥氏体晶粒尺寸,将2.3 GPa马氏体时 效钢的冲击功由9 J提高到20 J。Liu等¹⁸利用控制贝 氏体相变来提高强度和韧性,在强度为1.9 GPa时实 现了18J的韧性,但无法将韧性提高到20J以上。亚 稳态奥氏体晶粒和马氏体中高密度的位错有利于 显著提高强度和延展性。上述研究取得了极其优异 的性能,但均依赖层状结构来保证高性能。这种层 状组织在焊接过程或者热处理过程中会因为温度 高于完全奥氏体化温度进而重新奥氏体化,使层状 结构变成等轴状,从而恶化性能,甚至发生脆断。这 样的材料就难以进行后续奥氏体化热处理,对韧 性的继续优化有限制。因此,开发出可用于调质工 艺处理的2000 MPa级低成本C-Mn超高强度钢尤为 重要。

在调质处理中,通常把材料加热至奥氏体化温

度(Ae₃)以上,来直接调控原始奥氏体晶粒的晶粒尺 寸和形状,进而调控残余奥氏体(retained austenite, RA)和马氏体的体积分数、晶粒大小和位错密度等 以获得更加优异的力学性能。钟友坤¹⁹发现对Q690D 钢板,随着调质温度的升高,钢板的强度增大,韧性 降低。杨进德等^[10]指出随调质温度升高和保温时 间延长,钢中马氏体逐渐粗化、间距增大,硬度值 逐渐下降。上述研究说明调质处理能对材料强度、 塑性、韧性和硬度有很大的提升或削弱影响,利 用调质处理来提升超高强钢的性能具有很大可 行性。

本文探究了调质温度对新设计的C-Mn超高强 钢微观组织和力学性能的影响。通过SEM、XRD、 EBSD和拉伸试验等实验手段探究了不同调质温 度对组织演变的影响,主要包括原始奥氏体晶粒 形态和大小、试样的位错密度和变形前后奥氏体 体积分数的变化规律等方面,并达到了提升超高 强钢强度和塑性的目的,能为超高强钢的加工策 略提供新的见解,以协同增强超高强度钢中的多 种性能。

1 实验材料与方法

采用超高强中锰钢作为研究对象,其化学成分 见表1。基于前期研究基础^[1,11-13],结合Thermo-Calc软 件热力学相图计算,合理设计微合金化中锰钢成分, 包括C、Mn、Si、V等元素。为避免网状碳化物的生成, 设计的C含量应低于共析点。同时,C与V充分析出 时,奥氏体中C含量不宜过高,以保证相变后的马氏 体以板条结构为主,适量的Mn能保证室温下具有一 定量RA。此外通过实验钢的成分相图计算可得Ae₃ 为682 ℃,如图1所示,后续的调质温度应高于Ae₃ 点,本研究选用780、800和850 ℃。

表 1 实验钢的化学成分 Tab.1 Chemical composition of the experimental steel (mass fraction/%)

						(
Element	С	Si	Mn	V	Ni	Nb	Mo	Fe
Content	0.3	1	6.9	0.3	1	0.04	0.2	Bal.

将材料在真空感应熔炼炉中铸成50 kg,在1 200 ℃ 下保温6h,然后在约1050 ℃下锻造成60 mm×60 mm 的铸锭。实验钢的热处理工艺流程如图2所示。热轧工 艺为:将坯料加热到1 200 ℃保温2 h,利用φ450 mm

Fig.1 Composition phase diagram of the experimental steel

×450 mm二辊可逆式热轧机进行两阶段控轧, 在1100~1200℃下热轧至厚度20 mm,在900℃下 进一步轧制至5 mm,最后空冷至室温。热轧后对样 品进行各种处理:热轧样品在780/800/850℃下调 质处理60 min(分别记为样品Q780/Q800/Q850),在 -196℃下深冷处理20 min,然后在200℃下回火 60 min制得实验钢,所有冷却过程均为空冷。深冷处 理是为了消除室温下不稳定的大块奥氏体,而低温 回火过程中可以发生C从马氏体向奥氏体的迁移过 程,进一步稳定残余奥氏体。

沿轧制方向制备狗骨形拉伸试样,标距长度为 10 mm,宽度为4 mm,厚度为2 mm。拉伸实验采用台 湾高铁AG-X plus 100 kN 拉伸实验机,拉伸速率 为1 mm/min,采用视频引伸计测定伸长率。冲击试 样采用2 mm V口的5 mm×10 mm×55 mm半样尺寸, 冲击试验在ZBC2452-C摆锤冲击试验机上进行,每 组工艺采用3个冲击试样的平均值。在变形前后的 拉伸样上取10 mm×3.5 mm×1.8 mm的金相试样,磨 样,机械抛光,用体积分数为10%硝酸酒精溶液腐蚀 之后,利用FEI QUANTA 600扫描电子显微镜(SEM) 观察显微组织及冲击断口。利用背散射电子衍射 (EBSD)观察晶体学信息。为了获得RA体积分数和位 错密度,在室温下使用Cu kα辐射在9 kW Rigaku SmartLab上进行了X射线衍射(XRD)实验。XRD和 EBSD试样经机械研磨后电解抛光处理,电解抛光 溶液由900 mL酒精和100 mL高氯酸混合而成,工 作电压和抛光时间分别为23 V和25 s。利用XRD测 定时,采用Cu靶,扫描角度为40°~101°,选择奥氏 体(200)_γ、(220)_γ和(311)_γ衍射峰以及铁素体(200)_α和 (211)_α衍射峰,并对衍射峰的积分强度进行计算。残 余奥氏体的体积分数通过下式计算获得^[14]。

$$V_{\gamma} = 1.4 I_{\gamma} / (1.4 I_{\gamma} + I_{\alpha}) \tag{1}$$

式中, V_{γ} 为残余奥氏体的体积分数; I_{α} 为铁素体特征 峰的积分强度; I_{γ} 为奥氏体特征峰的积分强度。采用 改进的Williamson-Hall方法^[15-19],根据XRD谱计算实 验钢的位错密度。

2 实验结果及讨论

2.1 调质温度对实验钢微观组织的影响

图3为实验钢在不同调质温度下的SEM图像, 通过观察可知,经过调质处理后实验钢的微观组织 主要为板条马氏体(M)+残余奥氏体(RA)。对比不同 调质温度下的SEM图可以观察到,在780℃下调质 时存在较多带状的原始奥氏体晶界 (prior austenitic grain boundaries, PAGBs);在800℃下调质时存在较 多等轴状PAGBs;在850℃下调质时存在更多的等 轴状PAGBs。随着调质温度的增加,带状原始奥氏体 逐渐向等轴状原始奥氏体转变,如图3a~c所示。为进 一步观察不同调质温度下的PAGBs以及M和RA的 分布情况,进行放大倍数拍摄SEM图,M和RA被标 注在图3d~e中,图3d中主要为轧制过程中保留下的 带状PAGBs,图3e~f主要为原始奥氏体长大或形核 长大后的等轴状PAGBs。

由于扫描实验对原始奥氏体晶界的检测不够准 确,对样品Q780/Q800/Q850进行EBSD实验,并利用 MTEX工具和晶体学信息对原始奥氏体进行重构, 图4为实验钢在不同调质温度下的原始奥氏体重 构图。由图可知,在780 ℃调质时原始奥氏体呈细 小带状和等轴状,带状原始奥氏体晶粒的宽约4 µm, 长约14 μm;等轴状原始奥氏体晶粒的宽约3 μm, 长约5µm,如图4a所示。在800 ℃调质时原始奥氏体 为较大带状和等轴状组织,带状原始奥氏体晶粒的 宽约6 μm,长约26 μm;等轴状原始奥氏体晶粒的宽 约5 µm,长约10 µm,如图4b所示。在850 ℃调质时 原始奥氏体主要呈粗大等轴状,基本不存在带状原 始奥氏体组织;等轴状原始奥氏体晶粒的宽约6 µm, 长约12 µm,如图4c所示。随着调质温度的增加,带 状原始奥氏体逐渐长大,从780℃到800℃时,宽 度由4μm加宽至14μm,长度由14μm加长至26μm; 调质温度增加到850℃时,带状原始奥氏体晶粒过

图 3 实验钢在不同调质温度下的 SEM 图:(a, d) Q780;(b, e) Q800;(c, f) Q850 Fig.3 SEM images of the experimental steel at different quenching and tempering temperatures: (a, d) Q780; (b, e) Q800; (c, f) Q850

图 4 不同调质温度下实验钢重构的原始奥氏体晶粒和 IPF 图 :(a, d) 780 ℃; (b, e) 800 ℃; (c, f) 850 ℃ Fig.4 Reconstructed original austenite grains and IPF maps of the experimental steels at different quenching temperatures: (a, d) 780 ℃; (b, e) 800 ℃; (c, f) 850 ℃

大而分裂为新鲜的等轴状原始奥氏体。原始等轴状 奥氏体也随调质温度的增加而长大,从宽3 µm增加 至5 µm最后为6 µm。原始奥氏体结构的变化将会导 致M和RA的变化,室温下RA的含量和稳定性将影 响TRIP(transformation induced plasticity)效应的发 生,进而影响实验钢的力学行为。马氏体的变化情 况如图4e~f所示,随着调质温度的增加,马氏体的 平均等效圆直径由0.77 µm增加到0.92 µm,再增 加到0.95 µm,马氏体晶粒在不断粗化。

2.2 调质温度对实验钢位错密度和残余奥氏体的影响

选用Q780、Q800和Q850变形前后的试样进行 XRD测试,如图5a所示。利用峰值拟合、积分,计算 位错密度(奥氏体的位错密度×奥氏体的体积分数+ 马氏体的位错密度×马氏体的体积分数)和RA的体 积分数。调质温度从780℃增加至800℃,再增加到 850℃时,试样的位错密度从6.87×10¹⁵ m⁻²降低至 5.27×10¹⁵ m⁻²,再降低至4.46×10¹⁵ m⁻²,如图5b所示。调 质温度增加导致原始奥氏体长大或形核长大,如2.1

图 5 不同调质温度下实验钢位错密度和变形前后 RA 体积分数变化;(a) XRD 图;(b) 位错密度变化;(c) 奥氏体体积分数变化 Fig.5 Changes in the dislocation density and RA volume fraction before and after deformation of the experimental steel at different quenching and tempering temperatures: (a) XRD patterns; (b) changes in the dislocation density; (c) changes in the RA volume fraction

节所述,位错作为形核的主要位点,在这个过程中 不断泯灭,所以位错密度不断降低。

对比变形前后RA的体积分数,可得在变形过程中TRIP效应发生的程度,进而推断实验钢的塑性大小。如图5c所示,Q780、Q800和Q850样品,变形前的RA体积分数分别为12.6%、10.2%和9.2%。变形后的RA体积分数分别为5.5%、3.4%和2.1%。RA体积分数具体数值和变化值,如表2所示。Q780、Q800和Q850样品,RA体积分数的变化值分别为7.1%、6.8%和7.1%。随着调质温度的增加,原始奥氏体的晶粒不断增大,导致室温下RA的稳定性下降,RA的体积分数不断降低。Q780、Q800和Q850样品的RA体积分数的变化值基本相等,TRIP效应也基本相同。

2.3 调质温度对实验钢力学性能的影响

2500 (a)

2000

1500

1000

500

0

0

Engineering stress/MPa

图6a为不同调质温度下实验钢的工程应力-工程

表2 不同调质温度下实验钢拉伸变形前后奥氏体 体积分数变化

Tab.2 Changes in the austenite volume fraction of the experimental steel before and after tensile deformation at different quenching and tempering temperatures (volume fraction/%)

		(10)		
	RA volume	RA volume	DA transformation	
Sample	fraction before	fraction after	KA transformation	
	deformation/%	deformation/%	value/ 70	
Q780	12.6	5.5	7.1	
Q800	10.2	3.4	6.8	
Q850	9.2	2.1	7.1	

应变曲线。随着调质温度的升高,屈服强度和抗拉强 度均下降,断后伸长率基本保持不变,均匀伸长率也基 本保持不变,如图6b所示。在780、800和850℃调质 时,抗拉强度分别为2107、2064和1994 MPa,屈服强 度分别为1665、1582和1538 MPa,均匀伸长率为

8.9%、9.0%和8.8%,断后伸长率为17.4%、16.7%和 18.7%,如表3所示。位错密度的降低和马氏体晶粒 的粗化是抗拉强度和屈服强度降低的原因,随着室 温RA体积分数的降低和升高,实验钢的断后伸长率 也在小幅度变化。但3个样品RA体积分数的变化值 分别为7.1%、6.8%和7.1%基本相同,TRIP效应发生 程度基本一致。因此,Q780相比其他两个样品断后 和均匀伸长率基本相等。

表3 实验钢在不同调质温度下的力学性能 Tab.3 Mechanical properties of the experimental steel at different quenching and tempering temperatures

	Yield	Tensile	Uniform	Total
Sample	strength,	strength,	elongation,	elongation,
	YS/MPa	UTS/MPa	UE/%	TE/%
Q780	1 665	2 107	8.9	17.4
Q800	1 582	2 064	9.0	16.7
Q850	1 538	1 994	8.8	18.7

图7a~c为样品Q780、Q800和Q850的室温冲击 断口形貌,可观察到Q780和Q800的冲击断口形貌主 要为韧窝和解理面,冲击功分别为13.7和12.6 J。 Q850的冲断口形貌主要以解理面为主,存在少量的 韧窝,冲击功为10.0 J。利用摆锤式示波冲击试验机 采集冲击实验过程中载荷或冲击吸收功随位移变 化的相应数据并绘制成曲线,如图7d~f所示。可将总 冲击吸收能(E3)分为裂纹萌生能(E1)和裂纹扩展能 (E2)。Q780、Q800和Q850的E1分别为9.8、10.5和 7.9 J。E2分别为3.9、2.1和2.1 J。Q780具有较大的裂 纹萌生能和裂纹扩展能,说明其基体难以产生裂纹并且裂纹扩展很慢;而Q850具有较小的裂纹萌生能和裂纹扩展能,说明其基体容易产生裂纹并且裂纹扩展很快。影响冲击韧性的关键在于Q780和Q800具有更小的原奥氏体和马氏体晶粒,缩短了马氏体板条状晶粒的长宽比,有利于促进组织的均匀变形,因此其裂纹萌生能更大。此外,Q780的晶粒显著细化,具有更多的大角度晶界,加之其相对较高的RA体积分数,这些因素有利于阻碍裂纹的扩展,因此裂纹扩展能最高。综上,从拉伸性能和冲击韧性综合考虑,Q780试样获得了最佳的强度-塑性-韧性组合。

3 结论

(1)随着调质温度的增加,实验钢的原始奥氏体 由带状向等轴状转变,在780 ℃调质时,带状原始奥 氏体晶粒的宽约4 μm、长约14 μm,等轴状原始奥氏 体晶粒的宽约3 μm、长约5 μm。

(2)随着调质温度的增加,实验钢的位错密度从 6.87×10¹⁵m²降至5.27×10¹⁵m²,再降低至4.46×10¹⁵m², 实验钢室温下残余奥氏体的体积分数由12.6%降至 10.2%再降至9.2%,变形前后RA的体积分数变化值 由7.1%降至6.8%,再升至7.2%。

(3)Q780试样的综合力学性能最好,其屈服和抗 拉强度最大,分别为1665和2107 MPa。均匀伸长率 也相对较高为8.9%,室温裂纹萌生能(9.8 J)和裂纹 扩展能(3.9 J)也相对较高,使其室温冲击功最高

图 / 小阿姆贝温度下头驱射冲击性能:(a~c) 杆田 Q/80,Q800 种 Q850 至血冲击断日 SEM 图; (a~1) 杆田 Q/80,Q800 种 Q8. 室温冲击曲线

Fig.7 Impact properties of the experimental steel at different tempering temperatures: (a~c) SEM images showing the room temperature impact fracture of samples Q780, Q800 and Q850; (d~f) room temperature impact curves of samples Q780, Q800 and Q850

为13.7 J。其优异性能的原因是最大的位错密度 (6.87×10¹⁵ m⁻²)、最大的RA体积分数(12.6%)和最小的 马氏体平均晶粒尺寸(0.77 μm)。

参考文献:

 王瑞安,高义民,王怡然,施庆峰,高尚君,李明刚. 钴含量对马 氏体时效钢时效组织的影响研究[J]. 铸造技术,2023,44(12): 1094-1099.

WANG R A, GAO Y M, WANG Y R, SHI Q F, GAO S Q, LI M G. Study on the effect of cobalt content on the microstructure of maraging steels after aging treatment[J]. Foundry Technology, 2023, 44(12): 1094-1099.

[2] 王彬,王浩祥,汪军,王常志,于浩,徐斌,施家龙.等温处理和水 淬对Fe-0.9C-2.5Si-2.9Mn高碳低合金钢冲击磨料磨损性能的影 响[J].铸造技术,2022,43(4):276-281.

WANG B, WANG H X, WANG J, WANG C Z, YU H, XU B, SHI J L. Effect of austempering temperature and water queuching on impact abrasive wear properties of high carbon Fe-0.9C-2.5Si-2.9Mn steel[J]. Foundry Technology, 2022, 43(4): 276-281.

- [3] JIANG S H, WANG H, WU Y, LIU X J, CHEN H H, YAO M J, GAULT B, PONGE D, RAABE D, HIRATA A, CHEN M W, WANG Y D, LU Z P. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544: 460-464.
- [4] LI Y J, YUAN G, LI L L, KANG J, YAN F K, DU P J, RAABE D, WANG G D. Ductile 2-GPa steels with hierarchical substructure
 [J]. Science, 2023, 379(6628): 168-173.
- [5] HE B B, HU B, YEN H W, CHENG G J, WANG Z K, LUO H W, HUANG M X. High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science, 2017, 357(6355): 1029-1032.
- [6] WANG H J, FENG H, LI H B, ZHANG S C, ZHU H C, JIANG Z H. Mn-controlled martensitic variant selection significantly affects the strength and toughness of 2.3 GPa ultra-high strength spring steel[J]. Materials Science and Engineering: A, 2024, 914: 147131.
- [7] ZHOU X L, JIA C N, MI P, ZHANG H L, YAN W, WANG W, SUN M Y, VAN DER ZWAAG S, RONG L J. Cyclic quenching treatment doubles the Charpy V-notch impact energy of a 2.3 GPa maraging steel [J]. Journal of Materials Science & Technology, 2025, 209: 311-328.
- [8] LIU F G, ZHANG W J, LIN X, HUANG C P, LIU F C, HUANG W D, WANG P F, LI X. Effect of isothermal temperature on bainite transformation, microstructure and mechanical properties of LSFed 300 M steel[J]. Materials Today Communication, 2020, 25: 101452.
- [9] 钟友坤. 调质处理工艺对Q690D钢微观组织和力学性能的影响
 [J]. 铸造技术,2014,35(12):2851-2853.
 ZHONG Y K. Effect of thermal refining process on microstructure and mechanical properties of Q690D steel[J]. Foundry Technolo-

- [10] 杨进德,丁旭. 淬火对Cr-Mo-Ni-Mn-Si低合金耐磨钢组织与硬度 的影响[J]. 铸造技术,2021,42(7):613-616.
 YANG J D, DING X. Effect of quenching on microstructure and hardness of Cr-Mo-Ni-Mn-Si low alloy wear-resistant steel[J]. Foundry Technology, 2021, 42(7): 613-616.
- [11] 蒋家乐,余灿生,李云杰,常智湖,康健,袁国. 高温退火对低密度中锰钢中带状δ铁素体的影响[J]. 轧钢,2024,41(5):151-158. JIANG J L, YU C S, LI Y J, CHANG Z Y, KANG J, YUAN G. Effect of high temperature annealing on banded δ Ferrite in low-density medium manganese steels[J]. Steel Rolling, 2024, 41(5):151-158.
- [12] 余灿生,蒋家乐,李云杰,常智渊,康健,袁国.逆相变退火温度 对低密度中锰钢组织和力学性能的影响[J].金属热处理,2024, 49(11):118-122.

YU C S, JIANG J L, LI Y J, CHANG Z Y, KANG J, YUAN G. Effect of reverse transformation annealing temperature on microstructure and mechanical properties of a low-density medium manganese steel [J]. Heat Treatment of Metals, 2024, 49(11): 118-122.

- [13] 严则会,徐彬,孙俊杰.Nb-V合金化处理对高锰钢辙叉组织与性能的影响[J].铸造技术,2022,43(7):567-572.
 YAN Z H, XU B, SUN J J. Effect of Nb-V alloying on the microstructure and properties of high manganese steel frog [J]. Foundry Technology, 2022, 43(7): 567-572.
- [14] 李云杰,刘洺甫,胡虹玲,杨靖妍,刘明瑞,王国栋. 非等温碳分 配条件下的热轧DQ&P工艺研究[J]. 轧钢,2015,32(2):13-17. LI Y J, LIU M F, HU H L, YANG J Y, LIU M R, WANG G D. Research on hot-rolling DQ&P process under non-isothermal carbon partition[J]. Steel Rolling, 2015, 32(2):13-17.
- [15] UNGÁR T, OTT S, SANDERS P G, BORBÉLY A, WEERTMAN J R. Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis [J]. Acta Materialia, 1998, 46 (10): 3693-3699.
- [16] RENZETTI R A, SANDIM H R Z, BOLMARO R E, SUZUKI P A, MÖSLANG A. X-ray evaluation of dislocation density in ODS-Eurofer steel[J]. Materials Science and Engineering: A, 2012, 534: 142-146.
- [17] SEO E J, CHO L, ESTRIN Y, DE COOMAN B C. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel [J]. Acta Materialia, 2016, 113: 124-139.
- [18] HAJYAKBARY F, SIETSMA J, BÖTTGER A J, SANTOFIMIA M J. An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures [J]. Materials Science and Engineering: A, 2015, 639: 208-218.
- [19] KAMIKAWA N, SATO K, MIYAMOTO G, MURAYAMA M, SEKIDO N, TSUZAKI K, FURUHARA T. Stress-strain behavior of ferrite and bainite with nano-precipitation in low carbon steels [J]. Acta Materialia, 2015, 83: 383-396.

gy, 2014, 35(12): 2851-2853.