DOI:10.16410/j.issn1000-8365.2021.05.002

Mg-6.4La-4.87Al 镁合金的金属型和 压铸组织与性能

李 潇^{1,2},黄正华²,徐春杰¹,张忠明¹,雷 宇^{1,2},刘思琦^{1,2},徐 涛³,杨晓炜³,李卫荣⁴ (1. 西安理工大学材料科学与工程学院,陕西西安710048;2. 广东省科学院材料与加工研究所广东省金属强韧化技术 与应用重点实验室,粤港轻合金先进制造技术联合研发中心,广东广州510650;3. 嘉瑞科技(惠州)有限公司,广东惠 州516083;4. 东莞宜安科技股份有限公司,广东东莞523662)

摘 要:制备铸态与压铸态 Mg-6.48La-4.87Al 两种合金试样,采用 OM、SEM 和 XRD 分析其微观组织和相组成, 并测试室温拉伸与压缩力学性能、导热性能和流动性能。结果表明:铸态晶粒粗大,第二相分布不均匀;经传统压铸后, 晶粒变得细小,第二相分布均匀。两者试样微观组织均主要由 α -Mg 基体、点状 Al₁₁La₃ 相和少量针状 Mg₁₂La 相组成。铸 态试样抗拉强度、抗压强度和伸长率分别为 157 MPa、263 MPa 和 4.0%,经压铸后试样抗拉强度、抗压强度和伸长率分 别提高至 236 MPa、345 MPa 和 4.5%,较铸态值分别提高 63%、31%和 13%,同时呈现较好的流动性能,流动长度 为 1 374 mm。铸态试样导热系数达到 113.2 W/(m·K),经压铸后仍能保持较高的导热系数,为 90.9 W/(m·K)。

关键词:稀土镁合金;压铸态;微观组织;力学性能;导热性能;流动性能 中图分类号:TG146.2 文献标识码:A 文章编号:1000-8365(2021)05-0337-05

Microstructure and Properties of Metal Mold and Die Cast Mg-6.4La-4.87Al Magnesium Alloy

LI Xiao^{1,2}, HUANG Zhenghua², XU Chunjie¹, ZHANG Zhongming¹, LEI Yu^{1,2}, LIU Siqi^{1,2}, XU Tao³, YANG Xiaowei³, LI Weirong⁴

(1. School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China; 2.Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Guangdong-Hong Kong Joint Research and Development Center on Advanced Manufacturing Technology for Light Alloys, Institute of Materials and Processing, Guangdong Academy of Sciences, Guangzhou 510650, China; 3. KaShui Technology (Huizhou) Co., Ltd., Huizhou 516083, China; 4. Dongguan EONTEC Co., Ltd., Dongguan 523662, China)

Abstract: The as-cast and die-cast Mg-6.48La-4.87Al alloy samples were prepared. The microstructure and phase composition of the as-cast and die-cast Mg-6.48La-4.87Al alloy samples were analyzed by OM, SEM and XRD, and the mechanical properties, thermal conductivity and flow properties of the as-cast and die-cast Mg-6.48La-4.87Al alloy samples were tested at room temperature. The results show that the as-cast grain is coarse and the distribution of the second phase is not uniform. After traditional die-casting, the grains become fine and the second phase is evenly distributed. The microstructure of both samples is mainly composed of α -Mg matrix, punctate Al₁₁La₃ phase and a small amount of acicular Mg₁₂La phase. The tensile strength, compressive strength and elongation of the as-cast samples are 157 MPa, 263 MPa and 4.0%, respectively. After die-casting, the tensile strength, compressive strength and elongation of the as-cast samples are increased to 236 MPa, 345 MPa and 4.5%, respectively, which are 63%, 31% and 13% higher than the as-cast values, respectively. At the same time, they show good flow performance. The flow length is 1 374 mm. The thermal conductivity of the as-cast sample reaches 113.2 W/(m·K), and it can still maintain a high thermal conductivity of 90.9 W/(m·K) after die-casting. **Key words**: Mg-rare earth alloys; die cast; microstructure; mechanical properties; thermal conductivity; fluidity

收稿日期:2021-03-24

基金项目:广东省科学院发展专项资金项目(2019GDASYL-0203002、2020GDASYL-20200103137);广东省重点领域研发计划项目 (2020B010186002);东莞市核心技术攻关重点项目(2019622134013);西安市高校重大科技创新平台及科技成果就地转化 项目(20GXSF0003)

作者简介: 李 潇(1995—),安徽合肥人,硕士研究生.研究方向:压铸稀土镁合金的开发与应用.电话:15691741017, Email:774144804@qq.com

通讯作者:黄正华(1978—),江苏昆山人,博士,教授级高级工程师.研究方向:高性能稀土镁合金.电话:020-61086182, Email:zhhuang@gimp.gd.cn

镁合金因具有质轻、比强度高、机加工性能好、 容易回收利用等优点,常被作为一种轻质金属结构 材料,广泛应用于航空航天、汽车加工、生物医用和 电子产品等领域[1-3]。当今时代镁合金成型方式主要 以压铸为主,压铸镁合金分为以下几类:Mg-Al系、 Mg-Zn 系和 Mg-RE 系。现有的 Mg-Al 系压铸镁合 金存在一些问题:拉伸力学性能受限(特别是塑性 差),不能兼顾拉伸力学性能和铸造性能等。针对这 些问题,国内外研究学者通过合金化添加稀土元素 的方式从而克服这些缺点。研究表明,添加稀土元 素(RE)是提升合金室温和高温下的力学性能的有效 途径之一。镁合金中添加 Ce 能够提高其室温伸长 率、抗蠕变性和能耐腐蚀性能^[46]。采用真空压铸技 术制备的 Mg-5Al-xGd(x=1,2,3)合金, 当 Gd 含量为 2时,综合拉伸力学性能最佳,抗拉强度 UTS、屈服 强度 YS 和伸长率 EL 分别为 212.5 MPa、131.6 MPa 和 4.13%^[7]。随着 5G 时代的到来,通讯关键部件对 材料提出高导热的需求,因此有必要开发一种兼 具优异力学性能、导热性能及铸造性能的压铸镁 合金。为此,本文作者采用传统压铸获得压铸态Mg-648La-4.87A1 合金试样,并与铸态合金试样进行对 比,考察铸态与压铸态的拉伸力学性能、导热性能 及流动性能,为拓宽高强高导热压铸稀土镁合金的 应用领域提供理论指导和技术支撑。

1 试样制备与方法

本实验原料采用工业纯 Mg、纯 Al 锭, Mg-30% La 中间合金锭。首先在镁合金熔炼炉中加入 Mg 锭, 全程通入 CO₂+0.2%SF6(体积分数, vol.%)混合 气体保护, 升温至 953 K。Mg 锭完全熔化后加入 Al 锭, 待其完全融化, 加入 Mg-30%La 中间合金锭, 完 全熔化后升温至 983 K, 在 1.5 h 内搅拌两次, 以 保证成分均匀, 然后添加精炼剂进行精炼, 升温至 1 013 K 并静置 20 min, 随后降温至 963 K, 在冷室 压铸机上进行压铸, 压力 32 MPa, 压铸模具为捷迅 CSC-280, 预热温度为 260 ℃。同时, 压铸前先将合 金液浇入楔形金属型中, 得到金属型铸造的试样。

采用等离子体原子发射光谱仪(ICP)分析铸态 合金锭中 La 和 Al 含量分别为 6.48 %和 4.87 %。金 相试样从压铸拉伸试样相同部位切取, 经打磨抛光 后进行腐蚀,腐蚀剂选用 4%硝酸酒精溶液,将腐蚀 后的金相试样在 Leica DMI 3000M 型光学金相显微 镜 (OM) 及 JEOL HXA-8100 型扫描电子显微镜 (SEM)上进行显微组织和 EDS 分析;在采用铜靶的 Smart Lab 型 X 射线衍射仪(XRD)上进行物相分析; 采用 DNS200 型万能材料试验机进行室温拉伸及 压 缩试验,拉伸速度为 2 mm/min,压缩速度为 0.5 mm/min;采用 DRPL-2C 型导热系数测试仪测

图 1 铸态与压铸态 Mg-6.48La-4.87Al 合金试样的宏观照片 Fig.1 Macro photos of as cast and die cast Mg-6.48La-4.87Al alloy

试导热性能;测量流动试样长度来对合金的流动性 能进行表征。

2 实验结果与讨论

2.1 金属型和压铸试样的微观组织

图 2 为 Mg-6.48La-4.87Al 合金铸态与压铸态 试样的 XRD 谱。可见,铸态合金的 XRD 谱主要由 α -Mg、Al₁₁La₃和 Mg₁₂La 3 种相的峰组成。经压铸后, 试样的相组成不变,只是相峰位置略有差异,这是由 于在压铸过程中更多的合金元素固溶于 Mg 基体 中,发生晶格畸变,导致相峰位置偏移。同时,没有

图 2 Mg-6.48La-4.87Al 合金铸态与压铸态试样的 XRD 谱 Fig.2 XRD spectra of as cast and die cast Mg-6.48La-4.87Al alloys

出现 Mg₁₇Al₁₂ 或 Mg-Al-La 三元相峰。

图 3 为铸态与压铸态 Mg-6.48La-4.87Al 合金 的 OM 照片。可见,压铸与铸态合金均主要由灰白 色 α -Mg 基体和灰色 Al₁₁La₃ 相,还有少量 Mg₁₂La 相。铸态与压铸态第二相均沿枝晶间边界分布并 形成连续的网络,这些金属间化合物主要是 Al₁₁La₃ 相,据报道这是 AE 体系合金中的主要金属间化 合物相^[8-10]。

图 4 为铸态与压铸态 Mg-6.48La-4.87Al 合金的 SEM 照片,可见,铸态合金主要由黑色的 α-Mg 基体、白色针状相和少量亮白色点状相组成。

图 5 通过 EDS 标记铸态与压铸态不同位置的 3 个点或区域对第二相粒子分析,EDS 分析结果列 于表1中。表1EDS 能谱区域2中Al和La的元素 含量接近11:3,铸态合金基体中没有检测到La,而 压铸态合金基体中检测到微量La,这可能是因为压

表1 铸态与压铸态Mg-6.48La-4.87Al合金的能谱扫描分析 结果

	Tab.1	EDS	results	of a	as	cast	and	die	cast	Mg-0	6.48L	/a-
4.87Al alloys												

스 수	下共口法	成分组成 at(%)					
口亚	黑或区域	Mg	Al	La			
	1	84.50	11.80	3.70			
铸态	2	93.91	4.72	1.37			
	3	98.84	1.16	0			
	1	88.65	8.28	3.27			
压铸态	2	91.18	6.71	2.11			
	3	98.29	1.53	0.18			

铸过程冷却速度过快,第二相未完全析出,固溶在 Mg 基体中;在铸态与压铸态亮白色相与针状相中 均检测出 La 的存在,结合 XRD、EDS 能谱分析及相 关文献^[8-10]可知,亮白色相主要为 Al¹¹La³,针状相主 要为 Mg₁₁La。La、Mg 和 Al 的电负性分别为 1.10、 1.31 和 1.61,La 与 Mg、Al 之间的电负性差值分别

(a)铸态
 (b)压铸态
 图 3 铸态与压铸态 Mg-6.48La-4.87Al 合金的 OM 照片
 Fig.3 OM graphs of as cast and die cast Mg-6.48La-4.87Al alloys

(a)铸态

(b)压铸态

图 4 铸态与压铸态 Mg-6.48La-4.87Al 合金的扫描电镜照片 Fig.4 SEM graphs of as cast and die cast Mg-6.48La-4.87Al alloys

图 5 铸态与压铸态 Mg-6.48La-4.87Al 合金的能谱取点位置 Fig.5 EDS analysis points of as cast and die cast Mg-6.48La-4.87Al alloys

为 0.21 和 0.51,由于 Al 和 La 之间的电负性差值更 大,加入 La 后在液态金属凝固过程中 La 会优先与 Al 结合生成 Al₁₁La₃ 相析出,直至 Al 被完全消耗,此 过程消耗 La 约 21 %,剩余 79 %的 La 与 Mg 相结 合生成 Mg₁₂La 相析出,因而在该合金中相含量 α -Mg>Mg₁₂La>Al₁₁La₃,且无 β -Mg₁₇Al₁₂ 相的存在。

2.2 铸态与压铸态的性能

图 6 为铸态与压铸态 Mg-6.48La-4.87Al 合金 的室温和高温拉伸工程应力-应变曲线,其拉伸力 学性能结果列于表 2 中,同时,采用相同压铸工艺制 备的 AZ91D 最常用压铸镁合金各项性能亦列于表 2。可以看出,铸态合金室温抗拉强度 157 MPa,抗压 强度 263 MPa, 伸长率 4.0%, 而压铸态合金室温抗 拉强度 236 MPa, 抗压强度 345 MPa, 伸长率 4.5 %。 较铸态值分别提高 63%、31%和 13%。铸态合金导热 系数为 113.2 W/(m·k), 压铸态合金导热系数为 90.9 W/(m·k)。压铸态合金室温拉伸、压缩力学性能 优于铸态合金,这是由于压铸态合金晶粒尺寸小于 铸态合金,而晶粒越小,对应相同体积的晶界越多, 位错运动的障碍也越多,因而合金的强度就越高;同 时压铸过程冷却速度更快,时间更短,第二相未完全 析出导致其比例更少,且压铸态第二相的分布更加 均匀,因而压铸态合金力学性能较高。与 AZ91D 相 比,压铸态合金抗拉强度与其相当,但屈服强度略高 于 AZ91D 合金,同时,压铸态合金的导热性能和流 动性能均明显强于 AZ91D 合金。

铸态合金导热系数为 113.2 W/m·K,而压铸态 合金导热系数为 90.9 W/m·K。这归因于压铸态晶粒 尺寸比铸态晶粒尺寸细小,而合金晶粒细化,晶界的 体积分数增加,晶界作为一种面缺陷会对电子的自 由运动产生散射,降低电子的平均自由程,从而降低 合金的热导率^[11]。此外,在铸态与压铸态合金部分区 域也观察到一些黑色孔洞,这主要是由于气体被困 于模腔中无法排出而形成。压铸态与铸态合金相比, 气孔更多且体积更大,因而压铸态合金气体孔隙率 更大,而气体孔隙率是一种隔热介质,是阻碍合金导 热性能的原因之一,气体孔隙率越大,合金的导热率 越差,因而铸态合金导热率优于压铸态合金。

图 7 为压铸 Mg-6.58La-4.87Al 合金流动性试 样宏观图,流动长度为 1374 mm。对比压铸 AZ91D 合金的流动长度 1196 mm 有明显提高,这是由于在 镁合金中加入适量的稀土元素,可以显著提高其流 动性。稀土元素可以减少其结晶温度范围;稀土元素 可与 MgO 发生反应置换出镁单质,生成低熔点的稀 土物,化学方程式:3MgO(固)+2[RE]=RE₂O₃+Mg(液), 从而减少熔体的粘度^[12]。

为深入分析稀土镁合金的拉伸断裂机制,观察 了其拉伸断口形貌,结果如图 8 所示。可见,断口中 除了解理台阶外还有明显的撕裂棱和韧窝,因而稀 土镁合金的断裂机制主要为以韧性断裂和解理断裂 的混合断裂断裂机制。由于镁合金属于密排六方晶 体结构,与面心立方结构的β-Mg₁₇Al₁₂相结构差异 较大,受力时容易在β-Mg₁₇Al₁₂相与基体截面处产 生应力集中,而使其相界面处开裂,并伴随裂纹扩展 直至合金断裂。随着稀土元素的加入,β-Mg₁₇Al₁₂相 变得相对减少,同时伴有针状和点状 Al₁₁La₃ 相的析

图 6 铸态与压铸态 Mg-6.48La-4.87Al 合金的拉伸、压缩工程应力-应变曲线 Fig.6 Tensile and compressive engineering stress-strain curves of as cast and die cast Mg-6.48La-4.87Al alloys

表2 铸态与压铸态Mg-6.48La-4.87Al合金的性能结果及与AZ91D合金的性能结果对比 Tab.2 Property results of as cast and die cast Mg-6.48La-4.87Al alloys and comparison with AZ91D alloy

Tab.2 Toperty results of as east and the east fing of the 4.07Af anoys and comparison with A221D anoy									
수수	铸造				压缩	力学性能	热导率	流动性	
	方式	抗拉强度 /MPa	屈服强度 /MPa	伸长率(%)	抗压强度/MPa	抗压屈服强度 /MPa	$/(W/m \cdot K)$	/mm	
Ma 6 491 a 4 97 A 1	铸态	157	95	4.0	263	163	113.2	/	
Mg-0.48La-4.8/AI	压铸态	236	158	4.5	345	223	90.9	1 374	
AZ91D	压铸态	238	145	6.0	394	232	61.1	1 196	

图 7 压铸 AZ91D 和 Mg-6.48La-4.87Al 合金的流动性试样宏 观图

Fig.7 Macro photos of die cast AZ91D and Mg-6.48La-4.87Al alloy fluidity samples

出,镁合金断口表面没有明显的微观裂纹,由此表明

<u>10 μm</u>

晶粒的细化和 Al₁₁La₃ 相的析出对镁合金中微观裂 纹的产生与扩展有很好的阻碍效果^[13]。

3 主要结论

(1)铸态与压铸态 Mg-6.48La-4.87Al 合金组织 主要由 α -Mg 基体、针状 Mg₁₂La 结构和点状 Al₁₁La₃ 组成。铸态晶粒粗大,第二相分布不均匀;经传统压 铸后,晶粒变得细小,第二相分布均匀。

(2)铸态合金室温抗拉强度 157 MPa,抗压强度
263 MPa,伸长率 4.0%,而压铸态合金室温抗拉强度
222 MPa,抗压强度 345 MPa,伸长率 4.5%。较铸态
值分别提升 63%、31%和 13%;铸态合金导热系数为
113.2 W/m·K,压铸态合金导热系数有所降低,为
90.9 W/m·K。

(a)铸态(b)压铸态图 8 铸态与压铸态 Mg-6.48La-4.87Al 合金的拉伸断口形貌Fig.8 Tensile fracture morphology of as cast and die cast Mg-6.48La-4.87Al alloys

参考文献:

- [1] 邢清源,孟令刚,杨守杰,等.新型稀土镁合金的研究进展[J].铸
 造,2018,67(4):317-322.
- [2] 肖璐,潘复生.含铈镁合金组织和性能的研究进展[J].金属热处 理,2019,44(10):230-236.
- [3] 庞松,韩朝霞,任政,等. 含 Nd 镁合金材料研究应用现状与展望[J]. 兵器材料科学与工程,2017,40(4): 115-120.
- [4] LIU W, CAO F, CHANG L, et al. Effect of rare earth element Ce and La on corrosion behavior of AM60 magnesium alloy [J]. Corrosion Science, 2009, 51(6): 13344343.
- [5] CHINO Y, KADO M, MABUCHI M. Compressive deformation behavior at room temperature 773 K in Mg0.2mass% (0. 035at%) Ce alloy [J] .Acta Materialia, 2008, 56(3): 387-394.
- [6] WANG X, ZENG X, YAO S, et al. The corrosion behavior of Ce-implanted magnesium alloys [J]. Materials Characterization, 2008, 59(5): 618-623.
- [7] 吴伟,代丽,车欣,等.Gd 对真空压铸 Mg-Al 合金组织性能的影响[J].铸造,2014,63(5):449-453.

- [8] BAI J, SUN Y S, XUE F, et al. Microstructures and creep properties of Mg-4Al- (1-4) La alloys produced by different casting techniques[J]. Mater. Sci. Eng. A, 2012(552):472-480.
- [9] ZHU S M, EASTON M A, ABBOTT T B, et al. Evaluation of magnesium die casting Alloys for elevated temperature applications: microstructure, tensile properties, and creep resistance [J]. Metal. Mater. Trans. A, 2015(46): 3543-3554.
- [10] ZHU S M, GIBSON M A, NIE J F, et al. Microstructural analysis of the creep resistance of die-cast Mg-4Al-2RE alloy [J]. Scr. Mater, 2003(48): 1029-1034.
- [11] LIU Y F, JIA X J, QIAO X G, et al. Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg-4Al magnesium alloys [J]. Journal of Alloys and Compounds, 2019, 806: 71-78.
- [12] 孙健,蒙毅,杨钱峰,等. 镁合金的流动性及充型能力研究综述[J]. 热加工工艺, 2019, 48(11): 1-5.
- [13] 张美丽,罗姝淑,韩茜,等.稀土(La,Ce)对 AZ31D 镁合金组织与 性能的影响[J].材料热处理学报,2020,41(9):83-90.

